The Statistical Modeling of Wavelet Coefficients as a Tool for Image De-noising

نویسنده

  • J. N. Ellinas
چکیده

This paper proposes a spatially adaptive statistical model for wavelet image coefficients in order to perform image de-noising. The wavelet coefficients are modeled as zero-mean Gaussian random variables with high local correlation. This model is developed in a Bayesian framework, where a Maximum Likelihood (ML) estimator evaluates the variance of the blocks to which the wavelet subbands have been segmented. Then, applying the Minimum Mean Squared Error (MMSE) estimation procedure, the original or de-noised wavelet image coefficients are estimated. The reliable estimation of local variance is performed by making the assumption that variance is locally smooth. The validity of this assumption is boosted by segmenting the wavelet subbands into blocks of variable size. The segmentation employs quad-tree decomposition of the image and a linear transfer of the resulted tree on the wavelet subbands. This decomposition identifies object boundaries and defines more accurately the regions of smooth variance instead of dividing them in to blocks of fixed size. The extensive experimental evaluation, shows that the proposed scheme demonstrates very good performance as far as PSNR measures and visual quality are concerned with respect to others state of the art de-noising schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image De-noising based on the Statistical Modeling of Wavelet Coefficients and Quad-Tree Decomposition

This paper proposes a spatially adaptive statistical model for wavelet image coefficients in order to perform image de-noising. The wavelet coefficients are modelled as zero-mean Gaussian random variables with high local correlation. This model is developed in a Bayesian framework, where a Maximum Likelihood (ML) estimator evaluates the variance of the blocks to which the wavelet subbands have ...

متن کامل

De-Noising SPECT Images from a Typical Collimator Using Wavelet Transform

Introduction: SPECT is a diagnostic imaging technique the main disadvantage of which is the existence of Poisson noise. So far, different methods have been used by scientists to improve SPECT images. The Wavelet Transform is a new method for de-noising which is widely used for noise reduction and quality enhancement of images. The purpose of this paper is evaluation of noise reduction in SPECT ...

متن کامل

Assessment of the Wavelet Transform for Noise Reduction in Simulated PET Images

Introduction: An efficient method of tomographic imaging in nuclear medicine is positron emission tomography (PET). Compared to SPECT, PET has the advantages of higher levels of sensitivity, spatial resolution and more accurate quantification. However, high noise levels in the image limit its diagnostic utility. Noise removal in nuclear medicine is traditionally based on Fourier decomposition o...

متن کامل

Image De-Noising and Micro Crack Detection of Solar Cells

Solar cell is known as a sustainable and environment friendly source of energy in nature. It converts sunlight directly into electricity with zero emission and also without side-effects on the environment. But, solar cells have optical and mechanical defects which include the type of micro crack, the size of crack, and the noise from electrical or electromechanical interference during the image...

متن کامل

Quantitative Assessment of Conventional and Modern De-Noising on Nuclear Medicine Images

Introduction: One of the major problems in the development of nuclear medicine images is the presence of noise. The noise level in nuclear medicine images is usually reduced by the analysis of imaging data in a Fourier transform environment. The main drawback of this environment belongs to low signal to noise ratio in high frequencies because removing noise frequencies may remove data and times...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005